初一数学
小米 2021-01-20 151 0 0 0 0
初中,初一,数学,初一数学知识点,苏教版初一数学知识点代数1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际…

苏教版初一数学知识点

代数

1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.

2.列代数式的几个注意事项(数学规范):

(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;

(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;

(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.

3.几个重要的代数式:(m、n表示整数)

(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;

(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;

(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;

(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.

初一年级下册数学知识点浙教版

平面直角坐标系

一、知识网络结构

二、知识要点

1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。

2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。

5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。

6、各象限点的坐标特点①第一象限的点:横坐标 0,纵坐标 0;②第二象限的点:横坐标 0,纵坐标 0;③第三象限的点:横坐标 0,纵坐标 0;④第四象限的点:横坐标 0,纵坐标 0。

7、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标 0,纵坐标 0;②x轴负半轴上的点:横坐标 0,纵坐标 0;③y轴正半轴上的点:横坐标 0,纵坐标 0;④y轴负半轴上的点:横坐

标 0,纵坐标 0;⑤坐标原点:横坐标 0,纵坐标 0。(填“>”、“<”或“=”)

8、点P(a,b)到x轴的距离是 |b| ,到y轴的距离是 |a| 。

9、对称点的坐标特点①关于x轴对称的两个点,横坐标 相等,纵坐标 互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

10、点P(2,3) 到x轴的距离是 ; 到y轴的距离是 ; 点P(2,3) 关于x轴对称的点坐标为( , );点P(2,3) 关于y轴对称的点坐标为( , )。

11、如果两个点的 横坐标 相同,则过这两点的直线与y轴平行、与x轴垂直 ;如果两点的 纵坐标相同,则过这两点的直线与x轴平行、与y轴垂直 。如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ∥y轴,PQ⊥x轴;如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ∥x轴,PQ⊥y轴。

12、平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。如果点P(a,b) 在一、三象限角平分线上,则P点的横坐标与纵坐标相同,即 a = b ;如果点P(a,b) 在二、四象限角平分线上,则P点的横坐标与纵坐标互为相反数,即 a = -b 。

13、表示一个点(或物体)的位置的方法:一是准确恰当地建立平面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的平面直角坐标系也不同,得到的同一个点的坐标也不同。

初一下学期数学知识点总结

【知识点一】实数的分类

1、按定义分类: 2.按性质符号分类:

注:0既不是正数也不是负数.

【知识点二】实数的相关概念

1.相反数

(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.

2.绝对值 |a|≥0.

3.倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .

4.平方根

(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.

(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作 .

5.立方根

如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

【知识点三】实数与数轴

数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.

【知识点四】实数大小的比较

1.对于数轴上的任意两个点,靠右边的点所表示的数较大.

2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.

3.无理数的比较大小:


Tag: 初中 初一 数学 初一数学知识点
节点 : 初一数学